Eksponentiell Bevegelse Gjennomsnittet Stata


Stata: Data analyse og statistisk programvare Nicholas J. Cox, Durham University, Storbritannia Christopher Baum, Boston College egen, ma () og dens begrensninger Statarsquos mest åpenbare kommando for å beregne glidende gjennomsnitt er ma () funksjonen til egen. Gitt et uttrykk, skaper det et periode-glidende gjennomsnitt av det uttrykket. Som standard er tatt som 3. må være merkelig. Men som den manuelle oppføringen indikerer, kan egen, ma () kanskje ikke kombineres med av varlist:. og av den grunn alene, det er ikke aktuelt for paneldata. I alle fall står den utenfor settet med kommandoer som er spesifikt skrevet for tidsserier, se tidsserier for detaljer. Alternative tilnærminger For å beregne bevegelige gjennomsnitt for paneldata er det minst to valg. Begge avhenger av at datasettet har vært forhåndssettet. Dette er veldig verdt å gjøre: Ikke bare kan du spare deg selv gjentatte ganger med å angi panelvariabel og tidsvariabel, men Stata oppfører seg smart gitt gaps i dataene. 1. Skriv din egen definisjon ved å bruke generering Bruke tidsserier operatører som L. og F.. Gi definisjonen av det bevegelige gjennomsnittet som argumentet til en generasjonserklæring. Hvis du gjør dette, er du selvsagt ikke begrenset til likevektede (uveide) sentrert glidende gjennomsnitt beregnet av egen ma (). For eksempel vil likeveide tre-glidende gjennomsnitt bli gitt av og noen vekt kan enkelt angis: Du kan selvsagt spesifisere et uttrykk som logg (myvar) i stedet for et variabelt navn som myvar. En stor fordel ved denne tilnærmingen er at Stata automatisk gjør det riktige for paneldata: ledende og lagre verdier utarbeides i paneler, akkurat som logikken dikterer de burde være. Den mest bemerkelsesverdige ulempen er at kommandolinjen kan bli ganske lang hvis det bevegelige gjennomsnittet innebærer flere termer. Et annet eksempel er et ensidig glidende gjennomsnitt basert bare på tidligere verdier. Dette kan være nyttig for å generere en adaptiv forventning om hva en variabel vil være basert på på hidtidig informasjon: hva kan noen prognose for den nåværende perioden basert på de siste fire verdiene, ved hjelp av en fast vekting ordning (en 4-periode forsinkelse kan være spesielt brukt i kvartalsvisserier.) 2. Bruk egen, filter () fra SSC Bruk det brukerskrevne egenfunksjonsfilteret () fra egenmore-pakken på SSC. I Stata 7 (oppdatert etter 14. november 2001), kan du installere denne pakken, hvorefter hjelpemore peker på detaljer på filteret (). De to eksemplene ovenfor ville bli gjengitt (I denne sammenhengen er generasjonsmetoden kanskje mer gjennomsiktig, men vi vil se et eksempel på det motsatte i et øyeblikk.) Lags er en numlist. fører til å være negativ lags: i dette tilfellet utvider -11 til -1 0 1 eller led 1, lag 0, lag 1. Koef-ficientene, en annen numlist, multipliserer tilsvarende lags eller ledende elementer: i dette tilfellet er disse elementene F1.myvar . myvar og L1.myvar. Effekten av normaliseringsalternativet er å skalere hver koeffisient med summen av koeffisientene slik at koeffisienten (1 1 1) normaliserer er ekvivalent med koeffisientene 13 13 13 og coef (1 2 1) normaliserer tilsvarer koeffisienter på 14 12 14 Du må spesifisere ikke bare lagene, men også koeffisientene. Fordi egen, ma () gir like vektet tilfelle, er hovedgrunnlaget for egen, filter () å støtte det ulikt vektede tilfellet, som du må spesifisere koeffisienter for. Det kan også sies at å forplikte brukerne til å spesifisere koeffisienter er et lite ekstra trykk på dem for å tenke på hvilke koeffisienter de vil ha. Hovedgrunnlaget for likevekter er, vi antar, enkelhet, men likevekt har elendige frekvensdomene egenskaper, for å nevne bare en vurdering. Det tredje eksemplet ovenfor kan enten være omtrent like komplisert som genereringsmetoden. Det er tilfeller der eget, filter () gir en enklere formulering enn å generere. Hvis du vil ha et ni-termisk binomialfilter, som klimatologene finner nyttige, ser det ut som om det er mindre fryktelig enn, og lettere å få riktig enn, akkurat som med genereringsmetoden, fungerer egen, filter () riktig med paneldata. Faktisk, som angitt ovenfor, avhenger det av at datasettet har blitt tsset på forhånd. Et grafisk tips Når du har beregnet dine bevegelige gjennomsnitt, vil du sannsynligvis se på en graf. Den brukerskrevne kommandoen tsgraph er smart om tsset datasett. Installer den i en oppdatert Stata 7 av ssc inst tsgraph. Hva med å skille med hvis Ingen av de ovennevnte eksemplene benytter seg av restriksjoner. Faktisk egen, ma () vil ikke tillate om å bli spesifisert. Noen ganger vil folk bruke hvis man beregner glidende gjennomsnitt, men bruken er litt mer komplisert enn det vanligvis er. Hva ville du forvente av et glidende gjennomsnitt beregnet med hvis. La oss identifisere to muligheter: Svak tolkning: Jeg vil ikke se noen resultater for de ekskluderte observasjonene. Sterk tolkning: Jeg vil ikke engang at du skal bruke verdiene for de ekskluderte observasjonene. Her er et konkret eksempel. Anta som en konsekvens av noen om tilstand, observasjoner 1-42 er inkludert, men ikke observasjoner 43 på. Men det bevegelige gjennomsnittet for 42 vil blant annet avhenge av verdien for observasjon 43 dersom gjennomsnittet strekker seg bakover og fremover og har en lengde på minst 3, og det vil på tilsvarende måte avhenge av noen av observasjonene 44 og videre under noen omstendigheter. Vårt gjetning er at de fleste ville gå for den svake tolkningen, men om det er riktig, støtter filter () ikke heller. Du kan alltid ignorere hva du donrsquot vil ha eller til og med sette uønskede verdier til å mangle etterpå ved å bruke erstatte. Et notat om manglende resultater i ender av serier Fordi glidende gjennomsnitt er funksjoner av lags og leads, produserer egen, ma () mangler hvor lags og ledninger ikke eksisterer, i begynnelsen og slutten av serien. Et alternativ nomiss styrker beregningen av kortere, ukjente glidende gjennomsnitt for haler. I motsetning, genererer heller ikke eget, filter () gjør, eller tillater, noe spesielt for å unngå å savne resultater. Hvis noen av verdiene som trengs for beregning mangler, mangler det resultatet. Det er opp til brukerne å avgjøre om og hvilken korrigerende kirurgi som kreves for slike observasjoner, antagelig etter å ha sett på datasettet og tatt i betraktning alle underliggende vitenskap som kan bringes til å bære. Gjennomsnittlig og eksponensiell utjevningsmodell Som et første skritt i å bevege seg utover gjennomsnittet modeller, tilfeldige gangmodeller og lineære trendmodeller, nonseasonal mønstre og trender kan ekstrapoleres ved hjelp av en flytende gjennomsnitt eller utjevningsmodell. Den grunnleggende forutsetningen bak gjennomsnittlige og utjevningsmodeller er at tidsseriene er lokalt stasjonære med et sakte varierende middel. Derfor tar vi et flytende (lokalt) gjennomsnitt for å anslå dagens verdi av gjennomsnittet, og deretter bruke det som prognosen for nær fremtid. Dette kan betraktes som et kompromiss mellom den gjennomsnittlige modellen og den tilfeldige-walk-uten-drift-modellen. Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend. Et glidende gjennomsnitt kalles ofte en quotsmoothedquot-versjon av den opprinnelige serien, fordi kortsiktig gjennomsnittsverdi medfører utjevning av støtene i den opprinnelige serien. Ved å justere graden av utjevning (bredden på det bevegelige gjennomsnittet), kan vi håpe å finne en slags optimal balanse mellom ytelsen til de gjennomsnittlige og tilfeldige turmodellene. Den enkleste typen gjennomsnittlig modell er. Enkel (likevektet) Flytende gjennomsnitt: Værvarselet for verdien av Y på tidspunktet t1 som er laget på tidspunktet t, er det enkle gjennomsnittet av de nyeste m-observasjonene: (Her og andre steder vil jeg bruke symbolet 8220Y-hat8221 til å stå for en prognose av tidsserien Y som ble gjort så tidlig som mulig ved en gitt modell.) Dette gjennomsnittet er sentrert ved period-t (m1) 2, noe som innebærer at estimatet av det lokale middel vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. (m1) 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er (m1) 2 i forhold til perioden for prognosen beregnes. Dette er hvor lang tid det vil være å prognostisere prognoser bak vendepunkter i dataene . For eksempel, hvis du er i gjennomsnitt de siste 5 verdiene, vil prognosene være omtrent 3 perioder sent i å svare på vendepunkter. Merk at hvis m1, den enkle glidende gjennomsnittlige (SMA) modellen er lik den tilfeldige turmodellen (uten vekst). Hvis m er veldig stor (sammenlignbar med lengden på estimeringsperioden), svarer SMA-modellen til den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av k for å oppnå den beste kvote kvoten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først kan vi prøve å passe den med en tilfeldig walk-modell, noe som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt: Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men i så måte velger den mye av kvotenivået i data (tilfeldige svingninger) samt quotsignalquot (det lokale gjennomsnittet). Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 termer, får vi et smidigere sett med prognoser: Det 5-tiden enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet. Gjennomsnittsalderen for dataene i denne prognosen er 3 ((51) 2), slik at den har en tendens til å ligge bak vendepunktene med tre perioder. (For eksempel ser det ut til at en nedtur har skjedd i perioden 21, men prognosene vender seg ikke til flere perioder senere.) Legg merke til at de langsiktige prognosene fra SMA-modellen er en horisontal rettlinje, akkurat som i tilfeldig gang modell. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, er prognosene fra SMA-modellen lik et veid gjennomsnitt av de siste verdiene. De konfidensgrenser som beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større da prognoseperioden øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvide seg for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisontprognoser. For eksempel kan du sette opp et regneark der SMA-modellen skulle brukes til å prognose 2 trinn foran, 3 trinn fremover, etc. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene i hver prognosehorisont, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av riktig standardavvik. Hvis vi prøver et 9-sikt enkelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en bremseeffekt: Gjennomsnittsalderen er nå 5 perioder (91) 2). Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10: Legg merke til at prognosene nå faller bakom vendepunkter med ca 10 perioder. Hvilken mengde utjevning er best for denne serien Her er et bord som sammenligner feilstatistikken sin, også et gjennomsnitt på tre sikt: Modell C, 5-års glidende gjennomsnitt, gir den laveste verdien av RMSE med en liten margin over 3 term og 9-sikt gjennomsnitt, og deres andre statistikker er nesten identiske. Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. (Tilbake til toppen av siden.) Browns Simple Exponential Smoothing (eksponentielt vektet glidende gjennomsnitt) Den enkle glidende gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en mer gradvis måte - for eksempel bør den siste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning (SES) - modellen oppnår dette. La 945 betegne en quotsmoothing constantquot (et tall mellom 0 og 1). En måte å skrive modellen på er å definere en serie L som representerer dagens nivå (dvs. lokal middelverdi) av serien som estimert fra data til nå. Verdien av L ved tid t beregnes rekursivt fra sin egen tidligere verdi slik: Således er den nåværende glattede verdien en interpolering mellom den forrige glattede verdien og den nåværende observasjonen, hvor 945 styrer nærheten til den interpolerte verdien til den nyeste observasjon. Forventningen for neste periode er bare den nåværende glatte verdien: Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av de tilsvarende versjoner. I den første versjonen er prognosen en interpolasjon mellom forrige prognose og tidligere observasjon: I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel av 945. Er feilen gjort ved tid t. I den tredje versjonen er prognosen et eksponentielt vektet (dvs. nedsatt) glidende gjennomsnitt med rabattfaktor 1-945: Interpolasjonsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark: det passer inn i en enkeltcelle og inneholder cellehenvisninger som peker på forrige prognose, forrige observasjon og cellen der verdien av 945 er lagret. Merk at hvis 945 1 er SES-modellen tilsvarer en tilfeldig turmodell (uten vekst). Hvis 945 0 er SES-modellen ekvivalent med den gjennomsnittlige modellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet. (Gå tilbake til toppen av siden.) Gjennomsnittsalderen for dataene i prognosen for enkel eksponensiell utjevning er 1 945 i forhold til perioden for prognosen beregnes. (Dette skal ikke være åpenbart, men det kan enkelt vises ved å vurdere en uendelig serie.) Derfor har den enkle, glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunktene med rundt 1 945 perioder. For eksempel, når 945 0,5 lag er 2 perioder når 945 0.2 lag er 5 perioder når 945 0,1 lag er 10 perioder, og så videre. For en gitt gjennomsnittlig alder (det vil si mengden lag), er prognosen for enkel eksponensiell utjevning (SES) noe bedre enn SMA-prognosen (Simple Moving Average) fordi den legger relativt mer vekt på den siste observasjonen - dvs. det er litt mer quotresponsivequot for endringer som oppstod i den siste tiden. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 945 0,2 begge en gjennomsnittlig alder på 5 for dataene i prognosene, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen og ved Samtidig er det ikke 8220forget8221 om verdier som er mer enn 9 år gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den lett kan optimaliseres ved å bruke en quotsolverquot-algoritme for å minimere den gjennomsnittlige kvadratfeilen. Den optimale verdien av 945 i SES-modellen for denne serien viser seg å være 0,2961, som vist her: Gjennomsnittsalderen for dataene i denne prognosen er 10,2961 3,4 perioder, noe som ligner på et 6-sikt enkelt glidende gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rett linje. som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervallene for den tilfeldige turmodellen. SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er faktisk et spesielt tilfelle av en ARIMA-modell. slik at den statistiske teorien om ARIMA-modeller gir et solid grunnlag for beregning av konfidensintervall for SES-modellen. Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA (1) og ikke en konstant periode. ellers kjent som en quotARIMA (0,1,1) modell uten constantquot. MA (1) - koeffisienten i ARIMA-modellen tilsvarer mengden 1-945 i SES-modellen. For eksempel, hvis du passer på en ARIMA (0,1,1) modell uten konstant til serien analysert her, viser den estimerte MA (1) - koeffisienten seg å være 0,7029, som er nesten nøyaktig en minus 0,2961. Det er mulig å legge til antagelsen om en konstant lineær trend uten null som en SES-modell. For å gjøre dette oppgir du bare en ARIMA-modell med en ikke-sesongforskjell og en MA (1) - sikt med en konstant, dvs. en ARIMA-modell (0,1,1) med konstant. De langsiktige prognosene vil da ha en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant langsiktig eksponensiell trend for en enkel eksponensiell utjevningsmodell (med eller uten sesongjustering) ved å bruke inflasjonsjusteringsalternativet i prognoseprosedyren. Den aktuelle kvoteringskvoten (prosentvekst) per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i forbindelse med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter . (Tilbake til toppen av siden.) Browns Lineær (dvs. dobbel) Eksponensiell utjevning SMA-modellene og SES-modellene antar at det ikke er noen trend av noe slag i dataene (som vanligvis er OK eller i det minste ikke altfor dårlig for 1- trinnvise prognoser når dataene er relativt støyende), og de kan modifiseres for å inkorporere en konstant lineær trend som vist ovenfor. Hva med kortsiktige trender Hvis en serie viser en varierende vekstnivå eller et syklisk mønster som skiller seg tydelig ut mot støyen, og hvis det er behov for å prognose mer enn 1 periode framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning (LES) modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trendmodellen er Browns lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. (En mer sofistikert versjon av denne modellen, Holt8217s, blir diskutert nedenfor.) Den algebraiske form av Brown8217s lineær eksponensiell utjevningsmodell, som den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men liknende former. Denne standardmodellen er vanligvis uttrykt som følger: La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y. Dvs. verdien av S ved period t er gitt av: (Husk at, under enkle eksponensiell utjevning, dette ville være prognosen for Y ved periode t1.) Lad deretter Squot betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning (ved hjelp av samme 945) til serie S: Endelig prognosen for Y tk. for noe kgt1, er gitt av: Dette gir e 1 0 (det vil si lure litt, og la den første prognosen være den samme første observasjonen) og e 2 Y 2 8211 Y 1. hvoretter prognosene genereres ved å bruke ligningen ovenfor. Dette gir de samme monterte verdiene som formelen basert på S og S dersom sistnevnte ble startet med S 1 S 1 Y 1. Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Holt8217s Lineær eksponensiell utjevning Brown8217s LES-modell beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som den kan passe: nivået og trenden er ikke tillatt å variere til uavhengige priser. Holt8217s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. Til enhver tid t, som i Brown8217s modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden. Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er L t82091 og T t-1. henholdsvis, da var prognosen for Y tshy som ville vært gjort på tidspunktet t-1, lik L t-1 T t-1. Når den faktiske verdien er observert, beregnes det oppdaterte estimatet av nivået rekursivt ved å interpolere mellom Y tshy og dens prognose, L t-1 T t 1, med vekt på 945 og 1- 945. Forandringen i estimert nivå, nemlig L t 8209 L t82091. kan tolkes som en støyende måling av trenden på tidspunktet t. Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t 8209 L t82091 og det forrige estimatet av trenden, T t-1. ved bruk av vekter av 946 og 1-946: Fortolkningen av trend-utjevningskonstanten 946 er analog med den for nivåutjevningskonstanten 945. Modeller med små verdier på 946 antar at trenden bare endrer seg veldig sakte over tid, mens modeller med større 946 antar at det endrer seg raskere. En modell med en stor 946 mener at den fjerne fremtiden er veldig usikker, fordi feil i trendberegning blir ganske viktig når det regnes med mer enn en periode framover. (Tilbake til toppen av siden.) Utjevningskonstantene 945 og 946 kan estimeres på vanlig måte ved å minimere gjennomsnittlig kvadratfeil i de 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 945 0.3048 og 946 0.008. Den svært små verdien av 946 betyr at modellen tar svært liten endring i trenden fra en periode til den neste, så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til å estimere det lokale nivået i serien, er gjennomsnittsalderen for dataene som brukes til estimering av lokal trenden, proporsjonal med 1 946, men ikke akkurat lik den . I dette tilfellet viser det seg å være 10 006 125. Dette er et svært nøyaktig tall, forutsatt at nøyaktigheten av estimatet av 946 er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er i gjennomsnitt over ganske mye historie i estimering av trenden. Prognoseplanet nedenfor viser at LES-modellen anslår en litt større lokal trend i slutten av serien enn den konstante trenden som er estimert i SEStrend-modellen. Også den estimerte verdien på 945 er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend, så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du 8220eyeball8221 ser dette, ser det ut som om den lokale trenden har vendt nedover på slutten av serien. Hva har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadriske feilen på 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden gjør ikke en stor forskjell. Hvis alt du ser på er 1-trinns feil, ser du ikke det større bildet av trender over (si) 10 eller 20 perioder. For å få denne modellen mer i tråd med øyehals ekstrapoleringen av dataene, kan vi manuelt justere trendutjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. Hvis vi for eksempel velger å sette 946 0,1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så. Here8217s hva prognosen tomten ser ut hvis vi setter 946 0,1 mens du holder 945 0.3. Dette ser intuitivt fornuftig ut på denne serien, selv om det er sannsynlig farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken Her er en modell sammenligning for de to modellene vist ovenfor, samt tre SES-modeller. Den optimale verdien av 945. For SES-modellen er ca. 0,3, men tilsvarende resultater (med henholdsvis litt mer responstid) oppnås med 0,5 og 0,2. (A) Holts lineær eksp. utjevning med alfa 0,3048 og beta 0,008 (B) Holts lineær eksp. utjevning med alfa 0,3 og beta 0,1 (C) Enkel eksponensiell utjevning med alfa 0,5 (D) Enkel eksponensiell utjevning med alfa 0,3 (E) Enkel eksponensiell utjevning med alfa 0,2 Deres statistikk er nesten identisk, slik at vi virkelig kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag på hva som har skjedd i løpet av de siste 20 perioder eller så, kan vi gjøre en sak for LES-modellen med 945 0,3 og 946 0,1. Hvis vi ønsker å være agnostiker om det er en lokal trend, kan en av SES-modellene være enklere å forklare, og vil også gi mer mid-of-the-road prognoser for de neste 5 eller 10 periodene. (Tilbake til toppen av siden.) Hvilken type trend-ekstrapolering er best: Horisontal eller lineær Empirisk bevis tyder på at hvis dataene allerede er justert (om nødvendig) for inflasjon, kan det være uhensiktsmessig å ekstrapolere kortsiktig lineær trender veldig langt inn i fremtiden. Trender som tyder på i dag, kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Av denne grunn utfører enkel eksponensiell utjevning ofte bedre ut av prøven enn det ellers kunne forventes, til tross for sin kvadratiske kvadratiske horisontal trend-ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i sine trendprognoser. Den demonstrede LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA-modell (1,1,2). Det er mulig å beregne konfidensintervall rundt langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller. (Pass på: ikke alle programmer beregner konfidensintervaller for disse modellene riktig.) Bredden på konfidensintervaller avhenger av (i) RMS-feilen i modellen, (ii) type utjevning (enkel eller lineær) (iii) verdien (e) av utjevningskonstanten (e) og (iv) antall perioder fremover du forutsetter. Generelt sprer intervallene raskere da 945 blir større i SES-modellen, og de sprer seg mye raskere når lineær snarere enn enkel utjevning brukes. Dette emnet blir diskutert videre i ARIMA-modellene i notatene. (Tilbake til toppen av siden.) Tidsseriemetoder Tidsseriemetoder er statistiske teknikker som benytter historiske data akkumulert over en tidsperiode. Tidsseriemetoder antar at det som har skjedd tidligere, vil fortsette å skje i fremtiden. Som navnet serier antyder, relaterer disse metodene prognosen til bare en faktor - tid. De inkluderer glidende gjennomsnitt, eksponensiell utjevning og lineær trendlinje, og de er blant de mest populære metodene for kortvarig prognose blant service - og produksjonsbedrifter. Disse metodene forutsetter at identifiserbare historiske mønstre eller trender for etterspørsel over tid vil gjenta seg. Flytende gjennomsnitt En prognos for tidsserier kan være så enkel som bruk av etterspørsel i den nåværende perioden for å forutse etterspørselen i neste periode. Dette kalles noen ganger en naiv eller intuitiv prognose. 4 For eksempel, hvis etterspørselen er 100 enheter denne uken, er prognosen for neste ukes etterspørsel 100 enheter dersom etterspørselen viser seg å være 90 enheter i stedet, så er etterspørselen etter følgende uker 90 enheter, og så videre. Denne typen prognosemetode tar ikke hensyn til historisk etterspørselsadferd som den bare bygger på etterspørsel i den nåværende perioden. Det reagerer direkte på de normale, tilfeldige bevegelsene i etterspørselen. Den enkle glidende gjennomsnittsmetoden bruker flere etterspørselsverdier i løpet av den siste tiden til å utvikle en prognose. Dette har en tendens til å dempe eller glatte ut, tilfeldige økninger og reduksjoner av en prognose som bare bruker en periode. Det enkle glidende gjennomsnittet er nyttig for å forutse etterspørselen som er stabil og viser ikke noen uttalt etterspørselsadferd, for eksempel en trend eller sesongmessig mønster. Flytende gjennomsnitt beregnes for bestemte perioder, for eksempel tre måneder eller fem måneder, avhengig av hvor mye forecasteren ønsker å glatte etterspørseldataene. Jo lengre glidende gjennomsnittsperiode, jo jevnere blir det. Formelen for beregning av det enkle glidende gjennomsnittet er å beregne et enkelt bevegelige gjennomsnitt. Instant Paper Clip Office Supply Company selger og leverer kontorrekvisita til bedrifter, skoler og byråer innen en radius på 50 kilometer fra lageret. Kontorforsyningsvirksomheten er konkurransedyktig, og evnen til å levere bestillinger raskt er en faktor for å få nye kunder og holde gamle. (Kontorene bestiller vanligvis ikke når de går lite på forsyninger, men når de går helt tom. Som et resultat trenger de straks sine bestillinger.) Sjefen for selskapet ønsker å være sikre nok drivere og kjøretøyer er tilgjengelige for å levere bestillinger omgående og De har tilstrekkelig lagerbeholdning på lager. Derfor ønsker lederen å kunne regne ut antall ordrer som vil skje i løpet av den neste måneden (dvs. for å prognose etterspørselen etter leveranser). Fra registreringer av leveringsordrer har ledelsen akkumulert følgende data de siste 10 månedene, hvorfra den vil beregne 3- og 5-måneders glidende gjennomsnitt. La oss anta at det er slutten av oktober. Prognosen som følge av enten 3- eller 5-måneders glidende gjennomsnitt er typisk for neste måned i sekvensen, som i dette tilfellet er november. Det bevegelige gjennomsnittet beregnes fra etterspørselen etter ordre for de foregående 3 månedene i sekvensen i henhold til følgende formel: 5-måneders glidende gjennomsnitt beregnes fra de foregående 5 månedene av etterspørseldata som følger: 3- og 5-måneders Flytte gjennomsnittlige prognoser for alle månedene av etterspørseldata er vist i følgende tabell. Faktisk vil bare prognosen for november basert på den siste månedlige etterspørselen bli brukt av lederen. De tidligere prognosene for tidligere måneder tillater oss imidlertid å sammenligne prognosen med den faktiske etterspørselen for å se hvor nøyaktig prognosemetoden er - det vil si hvor bra det gjør. Tre - og fem-måneders gjennomsnitt Både glidende gjennomsnittlige prognoser i tabellen ovenfor har en tendens til å utjevne variabiliteten i de faktiske dataene. Denne utjevningseffekten kan observeres i følgende figur hvor 3-måneders og 5-måneders gjennomsnitt er lagt på en graf av de opprinnelige dataene: Det 5-måneders glidende gjennomsnittet i foregående figur utjevner svingninger i større grad enn 3 måneders glidende gjennomsnitt. Imidlertid gjenspeiler 3-måneders gjennomsnittet de nyeste dataene som er tilgjengelige for kontorforvalteren. Generelt er prognoser som bruker lengre periode glidende gjennomsnitt, langsommere å reagere på de siste endringene i etterspørselen enn de som ble gjort ved hjelp av glidende gjennomsnitt for kortere periode. De ekstra dataperiodene demper hastigheten som prognosen svarer på. Etablering av riktig antall perioder som skal brukes i en bevegelig gjennomsnittlig prognose krever ofte litt prøve-og-feil-eksperimentering. Ulempen med den bevegelige gjennomsnittlige metoden er at den ikke reagerer på variasjoner som oppstår av en grunn, for eksempel sykluser og sesongmessige effekter. Faktorer som forårsaker endringer blir generelt ignorert. Det er i utgangspunktet en mekanisk metode som gjenspeiler historiske data på en konsistent måte. Den glidende gjennomsnittlige metoden har imidlertid fordelen av å være enkel å bruke, rask og relativt billig. Generelt kan denne metoden gi en god prognose på kort sikt, men det bør ikke presses for langt inn i fremtiden. Veidende Flytende Gjennomsnitt Den bevegelige gjennomsnittlige metoden kan justeres for å bedre reflektere svingninger i dataene. I den vektede glidende gjennomsnittlige metoden blir vektene tilordnet de nyeste dataene i henhold til følgende formel: Etterspørseldataene for PM Computer Services (vist i tabellen for eksempel 10.3) ser ut til å følge en økende lineær trend. Selskapet ønsker å beregne en lineær trendlinje for å se om den er mer nøyaktig enn eksponensiell utjevning og justerte eksponensielle utjevningsprognoser utviklet i eksempler 10.3 og 10.4. Verdiene som kreves for de minste kvadratberegninger er som følger: Ved bruk av disse verdiene beregnes parametrene for den lineære trendlinjen som følger: Derfor er den lineære trendlinjekvasjonen å beregne en prognose for periode 13, la x 13 i lineær trendlinje: Følgende graf viser den lineære trendlinjen sammenlignet med de faktiske dataene. Treningslinjen ser ut til å gjenspeile nøye de faktiske dataene, det vil si å være en god form og dermed være en god prognosemodell for dette problemet. En ulempe med den lineære trendlinjen er imidlertid at den ikke vil tilpasse seg en endring i trenden, da de eksponentielle utjevningsprognosene vil det vil si, det antas at alle fremtidige prognoser vil følge en rett linje. Dette begrenser bruken av denne metoden til en kortere tidsramme der du kan være relativt sikker på at trenden ikke vil endre seg. Seasonal Adjustments Et sesongmessig mønster er en repeterende økning og nedgang i etterspørselen. Mange etterspørselsprodukter viser sesongmessig oppførsel. Klærsalg følger årlige sesongmønstre, hvor etterspørselen etter varme klær øker om høsten og vinteren og faller om våren og sommeren ettersom etterspørselen etter kjøligere klær øker. Etterspørselen etter mange detaljhandler, inkludert leker, sportsutstyr, klær, elektroniske apparater, skinke, kalkuner, vin og frukt, øker i løpet av høytiden. Krav til hilsekort øker i forbindelse med spesielle dager som Valentinsdag og Morsdag. Sesongmønstre kan også forekomme på en månedlig, ukentlig eller daglig basis. Noen restauranter har høyere etterspørsel om kvelden enn til lunsj eller i helgene i motsetning til hverdager. Trafikk - dermed salg - i kjøpesentre plukker opp fredag ​​og lørdag. Det finnes flere metoder for å reflektere sesongmessige mønstre i en tidsserie-prognose. Vi vil beskrive en av de enklere metodene ved å bruke en sesongfaktor. En sesongfaktor er en tallverdi som multipliseres med den normale prognosen for å få en sesongjustert prognose. En metode for å utvikle en etterspørsel etter sesongmessige faktorer er å dele etterspørselen etter hver sesongperiode etter total årlig etterspørsel, i henhold til følgende formel: De resulterende sesongfaktorene mellom 0 og 1,0 er faktisk den del av den totale årlige etterspørselen som tildeles hver sesong. Disse sesongmessige faktorene multipliseres med den årlige forventede etterspørselen for å gi justerte prognoser for hver sesong. Beregner en prognose med sesongjusteringer. Wishbone Farms vokser kalkuner for å selge til et kjøttproduserende selskap gjennom hele året. Men høysesongen er åpenbart i løpet av fjerde kvartal av året, fra oktober til desember. Wishbone Farms har opplevd etterspørselen etter kalkuner de siste tre årene vist i følgende tabell: Fordi vi har tre års etterspørseldata, kan vi beregne sesongfaktorene ved å dele totalt kvartalsbehov for de tre årene etter total etterspørsel i alle tre år : Deretter vil vi multiplisere den forventede etterspørselen etter neste år, 2000, ved hver sesongfaktor for å få forventet etterspørsel etter hvert kvartal. For å oppnå dette trenger vi en etterspørselsprognose for 2000. I dette tilfellet, siden etterspørseldataene i tabellen ser ut til å vise en generelt økende trend, beregner vi en lineær trendlinje for de tre årene med data i tabellen for å bli tøffe prognose estimat: Prognosen for 2000 er således 58,17, eller 58,170 kalkuner. Ved å bruke denne årlige prognosen for etterspørsel er de sesongjusterte prognosene, SF i, for 2000 Sammenligning av disse kvartalsprognosene med de faktiske etterspørselsverdiene i tabellen, synes de å være relativt gode prognoser som reflekterer både sesongvariasjoner i dataene og den generelle oppadgående trenden. 10-12. Hvordan er den bevegelige gjennomsnittlige metoden lik eksponensiell utjevning 10-13. Hvilken effekt på eksponensiell utjevningsmodell vil øke utjevningskonstanten har 10-14. Hvordan skiller den justerte eksponensielle utjevningen seg fra eksponensiell utjevning 10-15. Hva bestemmer valget av utjevningskonstanten for trend i en justert eksponensiell utjevningsmodell 10-16. I kapitteleksemplene for tidsseriemetoder ble startprognosen alltid antatt å være den samme som den faktiske etterspørselen i første periode. Foreslå andre måter at startprognosen kan utledes ved faktisk bruk. 10-17. Hvordan er lineær trendlinjeprognosemodell forskjellig fra en lineær regresjonsmodell for prognoser 10-18. Av tidsseriemodellene som presenteres i dette kapittelet, inkludert det bevegelige gjennomsnittlige og vektede glidende gjennomsnittet, eksponensiell utjevning og justert eksponensiell utjevning, og lineær trendlinje, hvilken anser du best Hvorfor 10-19. Hvilke fordeler har justert eksponensiell utjevning over en lineær trendlinje for forventet etterspørsel som viser en trend 4 K. B. Kahn og J. T. Mentzer, Forecasting in Consumer and Industrial Markets, Journal of Business Forecasting 14, nr. 2 (sommeren 1995): 21-28.

Comments